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Abstract. A numerical investigation of the single-particle energy spectrum of two-dimensional
- electrons subject 10 a periodic potential of square symmetry and a perpendicular magnetic field
is presented. Qur approach allows variation of both the steepness and the strength of the
modulation potential, It is shown that the inclusion of coupling between different Landau lavels
has a strong impact on the appearance of the subband structure, The possibility of finding
_experimental indications of the spectrum is discussed in the light of the present calculations.

1. Introduction

The problem of Bloch electrons in a magnetic. field has attracted renewed interest in recent
years. The remarkable advent of nano-fabrication techniques made it possible to-create
two-dimensional lateral surface superlattices with modulation periods much shorter than the
elastic mean free path and comparable to the cyclotron radius at low magnetic fields. The
self-similar single-electron energy spectrum of such a system in a. perpendicular magpetic
field is the famous ‘Hofstadter butterfly’ [1]. The characteristic subband structure of the
‘Landau levels has been resolved, indirectly, as a suppression of the band conductivity in low-
temperature transport measurements on modulated GaAs structures by Weiss ef ¢l [2]. This
purely-quantum mechanical effect was successfully described by Gerhardts et al [3, 4], who
found that the relative contributions to the total conductivity from the band conductivity and
the scattering conductivity are determined by the relation between the collision broadening
and the modulation broadening of the energy spectrum. The underlying assumption of
weak -modulation that allows the neglect of coupling between different Landau levels in
their theory is certainly fulfilled under the experimental conditions of [2]. For stronger
modulation, however, this approximation is expected to fail.

In the present paper we consider the influence of interaction among the Landau levels
(LLs) on the energy spectrum with increasing modulation amplitude Vy. Qualitatively, one
expects- a broadening of free LLs until magnetic breakdown takes place when the Landau
~ bandwidth is approximately equal to the free LL spacing [5]. Further increase of Vj results
in a-sipuation where the lattice effects are dominant: the subbands cluster in distinct energy
bands resembling the well known spectrum of the Mathieu equation for zero magnetic field
{Onsager regime). While these effects were studied some time ago for simple sinusoidal
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potentials and for certain flux ratios per unit cell (*pure cases’) [6, 7], only recently has
work appeared attempting to include LL coupling within an extended version of Harper's
equation for arbitrary rational fluxes [8, 9] as well as within an approach based on the
use of symmetry adapted basis functions [10]. Such a generalization is desirable for two
reasons. First, there is growing interest in experiments or strongly moduiated systems, i.e.
on anti-dot arrays [11]. Second, the explanation of the magneto-transport measurements in
terms of classical chaotic dynamics [12] suggests a potential much steeper than a cosine.
In addition, self-consistent screening of the periodic perturbation by the two-dimensional
electron gas (2DEG) is known to enhance the relative importance of higher harmonics [13],
which have to be included for larger modulation amplitudes.

The outline of our approach has been published previously in detail [14] and will be
summarized briefly in the next section. Typical numerical results are presented and discussed

in section 3. Finally, we draw some conclusions on the conditions under which the spectrum
might be observable.

2. Outline of the theory

We consider a 2DEG in the plane z = 0 subject to a periodic modulation potential of square
symmetry with fixed period a and amplitude Vp:

Vi (x, ) = Volcos(Kx/2) cos(Ky/2)1¥ (0

where K = 2x/a. Obviously, the larger the integer N (N = 1,2,...) the steeper is the
resulting potential. _

The application of a perpendicular magnetic field reduces the translation symmetry
of the system. Nevertheless, for magnetic fields B such that the flux per unit cell is a
rational multiple of the flux guantum $g = k/e, the eigenstates of the Hamiltonian may be
classified by the eigenvalues of magnetic translation operators [15). This condition reads
o = Ba®/®y = p/q with p and g integers prime to each other. For the diagonalization of
the full Hamiltonian, inciuding the vector potential A = (0, Bx, 0) in Landau gauge and
the scalar potential (1), the wavefunctions are expanded into the symmetry adapted basis
set [16] :

+oo '
Gomk(x, ) = M2 D" expl—ik. L2 (sp + m)Ky Wy & stspamik, (X ¥)- @

§=—00

Here, W, ., (x, y) = exp(iky y)u,(x — k,.l,f,) is the solution of the free particle Hamiltonian
with properly normalized oscillator function u.(x), M, is the number of magnetic unit
cells in the x direction; and I, = (i/eB)!/? is the magnetic length. The allowed k vectors
{k = (kx, ky)) are now restricted to the first magnetic Brillouin zone (MBZ), i.e., | k; | < T/qa
and | ky |< w/a. Modulation induced gaps on the zone boundaries appear: each LL splits
into p subbands of equal weight. In the resulting linear matrix eigenvalue problem

D Abl(Ey = 8o + Vo (k)] = 0 3)

v mm'
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the summatlon runs only over reciprocal lattice vectors with m = 1,..., p. The matrix -
elements V”"" (k) have been calculated prevmusly [14] for arbitrary N the results are
summanzed in the appendix. E, = how(v +- ) is the energy of the vth LL (w, = eB/m™),
and € = € =27V VpCyy (€ is the elgenvalue to be determined).

In principle, the Hamiltonian matrix contains interactions of all LLs, which broaden due
to the presence of the periodic potential. To obtain an idea about the order of magnitude
of Vy for which the Landau-bands approach each other for a certain k we consider two
adjacent Landau bands for & = 1 and neglect their mutual repulsion in the first place Then,
they will cross for ,

. o _VJJ.(k) V“lu+1(k) h@c-

" - Ttshould be noted that occaswnally the bands may not actually cross but overlap for different
-k vectors, which is of no importance here. Keeping only the dominant i = j = N —1term
of the summation in the matrix element (AD ylelds

h2K2 Vo
T+ 24N— exp(—:rr/Z)n' { CN E, N[COS (aky) +cos (ak.r)][L (’T) v-]-l (TE')]

— C1,5-1 508 (aky ) COS (@ky) exp(—7/2)[ Ly (27) — Lys3 (21} @

Here we have used the fact that, by definition, fiw, = (th 212m*) (/7). Since we
have fixed the magnetic flux here it seems to us natural to express the relevant energy
in terms of the crystal momentum [1]. The RHS of this relation results from the lowest
order approximation of the non-interacting modulation broadened Landau bands. In this
approximation, the dependence on V; is linear. With increasing V the breakdown condition
is fulfilled for lower V) already since the numerical factors C;; (A2) grow rapidly. Despite
~ the fact that this estimation is valid only for unit flux ratio this behaviour is more general
since the Landau bands are more dispersive for higher N [14].
A qualitative understanding of the interplay between potential steepness and LL coupling
for arbitrary @ and N can be achieved by examining the term (A6) in V™" (k) which is
mainly responsible for the bandwidth: :

- WG N '_
05, = ez (22) i, (22). e

Here, the steepness enters via the function W,; = m(r2 + s%); r and s are equivalent to the
order of the Fourier components on the lattice for a given N. LL coupling comes into play
_ via g =] v —v |, which gives the energetic difference between the LLs under consideration.
Due 10 the exponential in (5) higher harmonics influence the spectrum for large o only, i.e.
for large magnetic field strengths. On the other hand, for large.enough fields a decoupling
of the LLs is possible. The relation between these two aspects becomes clear now from (5):
the smaller the ratic W,;/2w, the more effective becomes a certain Fourfer component of
~ the potential. Since (W;/a)¥/? goes rapidly. to zero then with increasing £ (i.e. for more

distant L1s) we can expect that both hlgher-order Fourief components and LL couplmg are
of i importance in an intermediate range, W 2o :
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3. Resnlts and discussion

Our numerical analysis was carried out for GaAs based structures (* = 0.067mg) With
lattice constants of @ = 200 nin, typical for éxperimeitts [2]. This means that fiw, >~ 0.2 meV
foroe = 1.

In figures 1 and 2 we show the dependence of the Landau bands on the potential strength
V, for a fixed flux ratio of 1 /o = — In the weak coupling limit, each Landau band consists
of two subbands. Incrcasmg Vo 1eads to & crossovér from this Landau reginie to the 50
calléd Onsager regime, where the magneti¢ field causes only a weak perturbdtion of the
potential {6]. Between these two limits there exists a region of magnetic breakdown, where
inter-band (Zener) tinnelling 1 is likely to occur [5). The detailed behaviour, however, reveals
a strong dependenceé on the shape of the potential as can be seen by comparinig figure i
(N = 1) with figure 2 (N = 3). The more dispersive Landau bands for the steeper (N = 3)
potential are reaching the breakdown reglme (compare (4) and the Onsager regime at i
lower potential strength compéred to the N = 1 case. it should be mentioned that the gaps
betwéen the subbands as well as those between differefit Landau bands do not completely
vanish although their widths afe below the résolution of the graphs in some cases. The
level Erossings are actually replaced by anti-cressings in the interacting multi-band system.
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Figure 1. Landau band structure for /¢ = 1/2 and

= 1 as a function of the potential strenjth V.
The crossover from nearly free LLs to the magnetic
breakdown region is discussed in the text. The number

Figure 2. The same as in the previous figure but
for a sieeper poteritial with N = 3. The more
dispersive character of the Landau subbands compared
with figurel is obvious.

of Lis necessary to obiain numerical convergence was
about 25, The scaled energy used throughout the figures
is £ = é€/hw,.

Figures 3-6 show four representative spectra with their full flux ratio dependence. Figure
3 shows the spectrum for an N = 1 potential with Vp = 0.5 meV. While the LLs are still
well separated for these parameters the modification of the internal subband structure within
each Landau band compared with the spectra for the uncoupled case in [14] is apparent.
Increasing the potential strength to Vg = 1.0 meV in figure 4 leads to a further change of
the subband structure due to the fact that the Landau bands tend to touch each other if (4)
holds. Even though the gaps in the third Landau band are hecommg very small the large
gap in the second Landau band survives.
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Figure 5, ThesameasmﬁgureSbutforN 3. This Figure 6, The case Vg = 1 meV and N = 3, Most
‘steeper potential causes a strofger coupling (see text) remarkable is the behaviour of the lowest Landan band.
Soine of the gaps due to anti-ciossing Detween 1is are  The lasge gap in the lowest Landaa band suwwes even
below the resolution of the graph, in the region of strong LL couplmg

From (4) a drastic alieration can be expected if one increases the power of the potential

in (1) while keeping Vg constant. This is shown for ¥ = 3 in figure 5 (Vp = 0.5 meV)
- and figure 6 (Vp = 1.0 meV). Looking at figure 6 we note some interesting features for this
highly coupled case. The tendency observed in figure 4 continues: while most of the gaps
shrink in the region of strong coupling some of them remain in the spectra. These gaps
may even extend over several Landau bands. In addition we note the large gap within the
lowest Landau band. Interestingly, its upper part tends to merge with the first Landau band
while the lower branch seems to be repelled. Because of the lack of a neighbouring band
on the low-energy side there is a prominent gap in the lowest Landau band ranging from
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1o = % to 1/a = 1. The formation of large gaps even in the region of strong coupling
can already be anticipated from figures 1 and 2: we note that the ranges of V; values where
the broadened LLs approach each other (for & = 1 roughly given by (4)) depend on the
subband indices. Although these two figures are for a particular o there is a more or less
smooth dependence of the subband structure on the flux ratio that becomes obvious now
from figure 6.

4. Conclusions

In summary, we have investigated the single-particle energy spectrum in an artificial
2D periodic potential and a perpendicular magnetic field. With the chosen form of the
potential we were able to discuss the influence of the steepness as well as the strength
of the modulating potential on the spectrum for arbitrary rational flux ratios. It was
shown that coupling between different 1.andau levels causes a strong modification of the
spectta compared to the ideal Hofstadter case even for parameters that are easily met in
current measuremenis. These coupling effects are more significant for steeper (anti-dot like)
potentials. We have discussed that the importance of LL interactions is mainly determined
by the relation between potential amplitude and cyclotron energy and by the Landau index
v. It should be noted that in the experiments there are usuvally several LLs occupied.
Nevertheless, our results indicate that some features of the self-similar band structure, such
as the field dependent modulation of the bandwidth and the presence of gap regions, should
be observable under reatistic conditions.

Finally, we should mention that while considering the aspect of modulation broadening
we did not analyse other effects such as the disorder broadening of the Hofstadter spectrum
which is of equal importance for an experimental observation. A detailed analysis of
the influence of different kinds of disorder, however, was given recently by Wulf and
MacDonald [17].
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Appendix

The matrix elements of the potential (1) are:

(k) exp( xkxa(m m') e}

% Z[C,NAI(N—z,OHC,NAz(o N~ )+ CipdstN =4, N = D) (AD

i, j=0

with numerical factors

- (1)(%): =
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- The functions A; are given by

Ar,) = DTl o @y
Aax(r,5) =D}, {Sm-m's[SE:n(v —v)]‘f +3m-m -s[sgn(v—V’)]E} C

and

- As(r, 5) = DI {Isgn(V’ — V)l Sy s COS[OT (W, )] ,
+ 5gn( ~ ) b5 cos{@'" W} )

with the angle

O (', 1) = rlbya + 2m(m + s/Dl/e + sgal’ — W~ ¢/s).  (AS)

As a consequence of the periodicity with respect to p, the Kronecker delta in (A3)-{A4) is
defined as follows: 8,,_,vs =1 if m—m' =5 and if m — m’ + p = s; otherwise it gives
zero. The function D7} reads

vy

' N2 W\, (W, |
e (%) exp(—w,,/za)( X ) Lt ( - ) - (A6)

with Wy; = (2 + 50, 6= v —v'|, v = mm(v, v), and v = max(v V), Li(x) is the
associated Laguerre polynomial.
Finally, T was introduced as

Tr = 42 coslr(kya + 27wm) fer] (A7)
for £ even (+ (=) if & = AM(E = 4M + 2)), whereas
T, =F2sin[r(ya +2rm)fe] (A8)

holds for & odd (— (+) if & = 4M 4 1(E = 4M 4 3)), with M an integer. This function
corresponds to the cosine term in Harper’s ‘equation if one considers the simplest additive
potential form.
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