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On the energy spectrum of lateral surface superlattices in a 
magnetic field: influence of Landau level coupling 
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t WIP bei der Max-Planck-Arbeilsgruppe Iialbleiterthenne. Hausvogteiplafz 5-7, 10117 
Berhn, Federal Revublic of Germanv 
% Depamnent of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, 
NJ 07030, USA 

h i v e d  9 July 1993 

Absbact. A numerical investigation of ule single-pyricle energy specmun of two-dimensional 
ClcChOns subjccl to a periodic pmntial d square symmetry and a perpendicular magnetic field 
is presenlcd. Our approach allows varialion of both the steepness and the strength of the 
modulation polential I t  is shown thar the inclusion of coupling belween dinerent h d a u  levels 
has a strong impact on the appearance of UK subband swc~ure. The possibility of finding 
enperimcnwl indications of the specmm is discussed in thc light of the p e m 1  calculations. 

1. Introduction 

The problem of Bloch electrons in a magnetic field has attracted renewed interest in recent 
years. The remarkable advent of nano-fabrication techniques made it possible to create 
twodimensional lateral surface superlattices with modulation periods much shorter than the 
elastic mean free path and comparable to the cyclotron radius at low magnetic fields. The 
self-similar singleelectron energy spectrum of such a system in a perpendicular magnetic 
field is the famous ‘Hofstadter butterfly’ [l]. The characteristic subband structure of the 
Landau levels has been resolved, indirectly, as a suppression of the band conductivity in low- 
temperature lmnspod measurements on modulated GaAs structures by Weiss etaZ[2]. This 
purely quantum mechanical effect was successfully described by Gerhardts et nl [3,4], who 
found that the relative conhibutions to the total conductivity from the band conductivity and 
the scattering conductivity are determined by the relation between the collision broadening 
and the modulation broadening of the energy spectrum. The underlying assumption of 
weak modulation that allows the neglect of coupling between different Landau levels in 
their theory is certainly fulfilled under the experimental conditions of [2]. For stronger 
modulation, however, this approximation is expected to fail. 

In the present paper we consider the influence of interaction among the Landau levels 
(LLs) on the energy spectrum with increasing modulation amplitude V,. Qualitatively, one 
expects a broadening of free LLS until magnetic breakdown takes place when the Landau 
bandwidth is approximately equal to the free LL spacing [5]. Further increase of VO results 
in a situation where the lattice effects are dominant: the subbands cluster in distinct energy 
bands resembling the well known spectrum of the Mathieu equation for zero magnetic field 
(Onsager regime). While these effects were studied some time ago for simple sinusoidal 
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potentials and for certain flux ratios per unit cell (‘pure cases’) [6, 71, only recently has 
work appeared attempting to include LL coupling withiin an extended version of Harper’s 
equation for arbitrary rational fluxes [8, 91 as well as within an approach based on the 
use of symmetry adapted basis functions [IO]. Such a generalization is desirable for two 
reasons. First, there is growing interest in experiments on strongly modulated systems, i.e. 
on anti-dot arrays 1111. Second, the explanation of the magneto-transport measurements in 
terms of classical chaotic dynamics [ 121 suggests a potential much steeper than a cosine. 
In addition, self-consistent screening of the periodic perturbation by the two-dimensional 
electron gas (XI=) is known to enhance the relative importance of higher harmonics [131, 
which have to be included for larger modulation amplitudes. 

The outline of our approach has been published previously in detail [14] and will be 
summarized briefly in the next section. Typical numerical results are presented and discussed 
in section 3. Finally, we draw some conclusions on the conditions under which the spectrum 
might be observable. 

2. Outline of the theory 

We consider a ZDEG in the plane z = 0 subject to a periodic modulation potential of square 
symmetry with fixed period a and amplitude VO: 

VN(X, y) = VO[COS(KX/~) COS(KY/Z)]~~ (1) 

where K = Z X / U .  Obviously, the larger the integer N (N = 1,2, . . .) the steeper is the 
resulting potential. 

The application of a perpendicular magnetic field reduces the translation symmetry 
of the system. Nevertheless for magnetic fields B such that the flux per unit cell is a 
rational multiple of the flux quantum = h/e,  the eigenstates of the Hamiltonian may be 
classified by the eigenvalues of magnetic translation operators [15]. This condition reads 
LY = BaZ/Oo = p/q with p and q integers prime to each other. For the diagonalization of 
the full Hamiltonian, including the vector potential A = (0, Bx, 0) in Landau gauge and 
the scalar potential (l), the wavefunctions are expanded into the symmeq adapted basis 
set [16] 

Here, ‘vv.kv(x, y) = exp(ik,y)u,(x - k&,) is the solution of the free pa.rticle Hamiltonian 
with properly normalized oscillator function U&), Mx is the number of magnetic unit 
cells in the x direction, and 1, = (h/eB)’12 is the magnetic length. The allowed k vectors 
(k = (kx, k,)) are now restricted to the first magnetic Brillouin zone (MBZ), i.e., I k, Id s/qa 
and I ky I< R/U.  Modulation induced gaps on the zone boundaries appear: each LL splits 
into p subbands of equal weight In the resulting h e a r  matrix eigenvalue problem 
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the summation runs only over reciprocal lattice vectors with m = 1, . . . , p .  The matrix 
elements V$?’(k) have been calculated previously 1141 for arbitrary N; the results are 
summarized in the appendix. E, = ho,(u + h) is the energy of the uth LL (0, = eB/m*), 
and ? = E - 2-4N VOCNN (6 is the eigenvalue to be determined). 

In principle, the Hamiltonian matrix contains interactions of all U, which broaden due 
to the presence of the periodic potential. To obtain an idea about the order of magnitude 
of VO for which the Landau bands approach each other for a certain k we consider two 
adjacent Landau bands for a = 1 and neglect their mutual repulsion in the first place. Then, 
they will cross for 

It should be noted that occasionally the bands may not actually cross but overlap for different 
k vectors, which is of no importance here. Keeping only the dominant i = j = N - 1 term 
of the summation in the matrix element (AI) yields 

h2K2 Vo --- 2m* - 24,.,N-l exP(-n/2)n( C N - - L . N [ ~ ~  (sky) -k cos (Qk)l[Lv(n)  - Lv+l(n)l 

- CN--I.N--I cos (ak,) cos ( Q ~ J  exp(-n/2)[~(2n) - Lv+1(2n)I}. (4) 

Here we have used the fact that, by definition, hoc = (h2K2/2m*)(cr/n). Since we 
have fixed the magnetic flux here it seems to us natural to express the relevant energy 
in terms of the crystal momentum [L]. The RHS of this relation results from the lowest 
order approximation of the non-interacting modulation broadened Landau bands. In this 
approximation, the dependence on Vo is linear. With increasing N the breakdown condition 
is fulfilled for lower VO already since the numerical factors C ,  (A2) grow rapidly. Despite 
the fact that this estimation is valid only for unit flux ratio this behaviour is more general 
since the Landau bands are more. dispersive for higher N [14]. 

A qualitative understanding of the interplay between potential steepness and LL coupling 
for arbitrary a and N can be achieved’by examining the term (A6) in V$!’”(k) which is 
mainly responsible for the bandwidth: 

Here, the steepness enters via the function W,, = n(r2 + sz); r and s are equivalent to the 
order of the Fourier components on the lattice for a given N .  LL coupling comes into play 
via e =I U’ - U 1. which gives the energetic difference between the LLS under consideration. 
Due to the exponential in (5) higher harmonics influence the s p e c ”  for large cr only, i.e. 
for large magnetic field strengths. On the other hand, for large enough fields a decoupling 
of the LLs is possible. The relation between these two aspects becomes clear now from (5): 
the smaller the ratio W,,/Zor, the more effective becomes a certain Fourier component of 
the potential. Since ( W , / a ) ~ ~  goes rapidly to zero then with increasing E (i.e. for more 
distant LLS) we can expect that both higher-order Fourier components and LL coupling are 
of importance in an intermediate range, W,, 2 a. 
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3; Results a d  disckssion 

OUr numerical analysis was carried out for GaAs based structures (m* = 0.667mo) 6% 
laitice constants of a = 200 h, typical for 8xperimeiits [2]. This means that fto, N 0.2 meV 
for& = 1. 

In figures 1 and 2 we show the dependence of the Landau b q d s  on the potential strength 
VO for a fixed flux iatio of IIa = f. In the weak couphg limit, each Landau band consists 
of tivo subbands. Increasing Vo leads to a crossover from this Landau regimb to the s6 
callid Onsager regime, wheie the magnetic field causes only a weak perturbation of the 
potefitial[61. Between these two limits there exists a region of magnetic breakdtiwn, where 
inter2band (Zener) tunnelling is liiely to occur IS]. The detailed behaviour, however, reveals 
a stking dependence on the shape of the potential as can be seen by comparing figure 1 
( N  = 1) with figure 2 (N = 3). The more dispersive Landau bands for the steeper (N = 3) 
potential are reaching ,the bre6kdown regime (compak (4) and the Onsager regime at % 
lower potential strength comprired to the N = 1 case. It should be mentioned that the gaps 
betwsbn the subbands as well as those between different h d a u  bands do not completely 
vanish although their widths afe below the resolution bf the graphs in some c*es. The 
level crossings are actually replaced hy anti-cmssings in the inteiacting multi-band system. 

I . -'I 
0 1 2 3 4 0 1 i I 1 -2 

"0 "0 

Figure 1. Landau band SmcluIe for l /u  = 1/2 and 
N = 1 as a function of the p%entid skebgu Vo. 
The cm%sover from nearly free Lu to the m a p t i c  
breakdown region is discussed in the text The number 
of us ntcessary IO oMain numerical convergence was 
about 25. The scaled energ used lhmughout the figures 
is E = Z/ho,. 

F i r e  2. The Same as in the previous figure but 
for a skper poditid with N = 3. m e  more 
dispersive character of the Landau subbands compared 
with figure1 is obvious. 

Figures 3-43 show four representative spectra with their full flux ratio dependence. Figure 
3 shows the spechum for an N = 1 potential with VO = 0.5 meV. While the LLS are still 
well separated for these parameters the modification of the intemal subband structure within 
each Landau band compared with the spectra for the uncoupled case in [14] is apparent. 
Increasing the potential strength to VO = 1.0 meV in figure 4 leads to a further change of 
the subband stmcture due to the fact that the Landau bands tend to touch each other if (4) 
holds. Even though the gaps in the thiid Landau band are becoming very small the large 
gap in the second Landau band survives. 
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F w m  3. Energy spec!" for a ktentlal with N = 1 
and a mg!h of VO = 0.5 meV. 'Ik calculalior~~ of 
the spectrum were d i e d  out up to a maximum depth 
of p = 10 fh+oughout the remaining figures. 

Figure 4. Spectwn for the 10 = 1 potential and an 
&d modulation amplitude of VD = 1 meV. 

F i r e s .  The same as in figure3 but for N = 3. This 
steeper potential ouses a mnger coupling (see text). 
Some of the gaps due to anti-crossing between us are 
below fhe resolution of the graph 

Figure 6. The case VO = 1 meV and N = 3. Most 
remarkable IS the behaviour of the lowest Landau band. 
The large gap in thc lowest Landan band survives even 
in the region of strong U. coupling. 

~ 

From (4) a drastic alteration can be expected if one increases the power of the potential 
in (1) while keeping VO constant. This is shown for N = 3 in figure 5 (VO = 0.5 meV) 
and figure 6 (V, = 1.0 meV). Looking at figure 6 we note some interesting features for this 
highly coupled case. The tendency observed in figure 4 continues: while most of the gaps 
shrink in the region of strong coupling some of them remain in the spectra. These gaps 
may even extend over several Landau bands. In addition we note the large gap within the 
lowest Landau band. Interestingly, its upper part tends to merge with the first Landau band 
while the lower branch seems to be repelled. Because of the lack of a neighbouring band 
on the low-energy side there is a prominent gap in the lowest Landau band ranging from 
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I/u = 4 to 1/u = 1. The formation of large gaps even in the region of strong coupling 
can already be anticipated from figures 1 and 2: we note that the ranges of V, values where 
the broadened LLs approach each other (for (I = 1 roughly given by (4)) depend on the 
subband indices. Although these two figures are for a particular (I there is a more or less 
smooth dependence of the subband structure on the flux ratio that becomes obvious now 
from figure 6. 

4. Conclusions 

In summary, we have investigated the single-particle energy spectrum in an artificial 
2D periodic potential and a perpendicular magnetic field. With the chosen form of the 
potential we were able to discuss the influence of the steepness as well as the strength 
of the modulating potential on the spectrum for arbitrary rational flux ratios. It was 
shown that coupling between different Landau levels causes a strong modification of the 
spech’a compared to the ideal Hofstadter case even for parameters that are easily met in 
current measurements. These coupling effects are more significant for steeper (antidot like) 
potentials. We have discussed that the importance of LL interactions is mainly determined 
by the relation between potential amplitude and cyclotron energy and by the Landau index 
U. It should be noted that in the experiments there are usually several LLs occupied. 
Nevertheless, our results indicate that some features of the self-similar band structure, such 
as the field dependent modulation of the bandwidth and the presence of gap regions, should 
be observable under realistic conditions. 

Finally, we should mention that while considering the aspect of modulation broadening 
we did not analyse other effects such as the disorder broadening of the Hofstadter spechum 
which is of equal importance for an experimental observation. A &tailed analysis of 
the influence of different kinds of disorder, however, was given recently by Wulf and 
MacDonald [17]. 
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with numerical factors 

cij = (2;) ( 2 ; )  
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and 

with the angle 

As a consequence of the periodicity with respect to p. the Kronecker delta in (A3KA4) is 
defined as follows: = I if m - m‘ = s and if m - m‘ + p = s; otherwise it gives 
zero. The function DFv reads 

with W,, = z ( r Z  + s2), 
associated Laguerre polynomial. 

= I w  - u‘l, V I  = min(w, U’), and y = max(v, v’); Lg(x) is the 

Finally, T ,  was introduced as 

T i  = f2cos[r(kya + 21rm)/a] 

for E even (+ (-) if 5 = 4M(5 = 4M + 2)). whereas 

holds for e odd (- (+) if e = 4M + l($ = 4M + 3)), with M an integer. This function 
corresponds to the cosine term in Harper’s equation if one considers the simplest additive 
potential form. 
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